The "D" in Dyslipidemia: How to Identify and Manage Childhood Dyslipidemia

Julie Brothers, MD

Medical Director, Lipid Heart Clinic

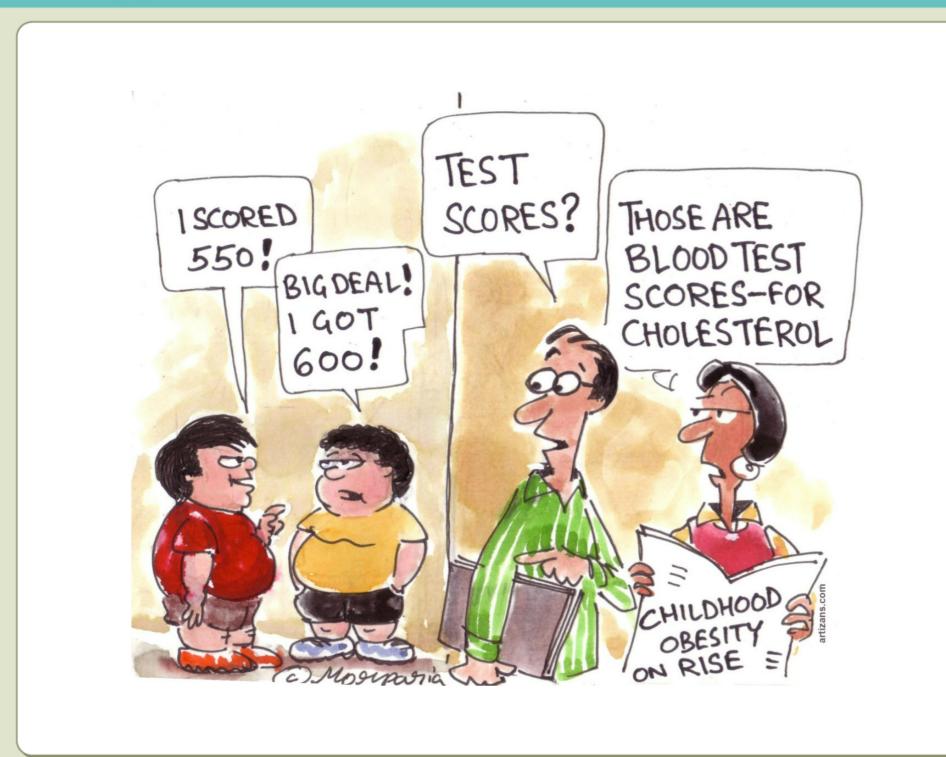
Assistant Professor

Division of Cardiology, Department of Pediatrics

The Children's Hospital of Philadelphia and

Perelman School of Medicine at the University of Pennsylvania

Disclosures

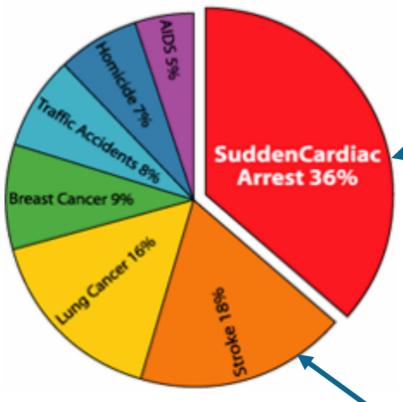

• I have no disclosures

Learning Objectives

- **D**efine the lipoprotein subtypes
- Learn how to diagnose dyslipidemia using the NHLBI screening guidelines for children and adolescents
- Understand appropriate diet and lifestyle ("doing") treatment options
- Identify which patients would qualify for drug (statin) therapy

Clinical Case I

- 13-year-old male
 - Lipids checked due to family history of hypercholesterolemia and premature coronary artery disease (CAD)
- Father with myocardial infarction at 41 years, s/p coronary artery bypass graft
- Paternal grandfather with hypercholesterolemia and premature CAD
- 15 yo brother with hypercholesterolemia, treated with statin

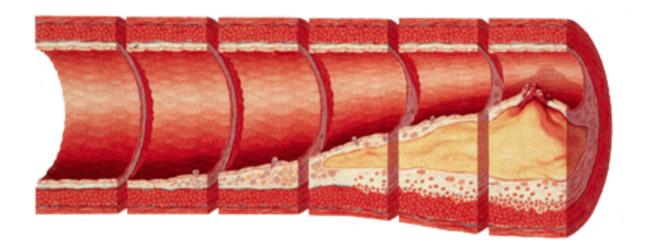

Clinical Case II

- 10-year-old female
 - Universal screening
- Family history:
 - Father and mother overweight
 - Maternal uncle treated for hypertriglyceridemia
 - Maternal grand-uncle had diabetes and bypass surgery in his 60s

CVD and Death in the U.S.

It begins in childhood

Kochanek KD. National Vital Statistics Report, CDC, 2011



2

Caption text

Lipids and Risk Factors

- Children with abnormal lipid levels are more likely to have lipid abnormalities in adulthood
- The number of cardiovascular risk factors is proportionate to the severity of asymptomatic coronary and aortic atherosclerotic heart disease

Benson et al N Eng J Med 1998,338:1650-1656

Lipoprotein Subtypes

- LDL-C (low density lipoprotein; "bad or L=lousy")
 - Formed from VLDL or chylomicrons
 - Saturated, trans fats increase LDL-C
 - Major carrier of cholesterol into body tissues
- HDL-C (high density lipoprotein; "good or H=heart healthy")
 - Synthesized in liver and gut
 - Major carrier of cholesterol away from body tissues
- Triglycerides (TG)
 - Major form of fat in body
- Non-HDL-C*
 - Includes all atherogenic apolipoprotein B-containing lipoproteins:
 VLDL, intermediate-density lipoprotein (IDL), LDL, and lipoprotein(a)

Most Recent NHLBI Guidelines

- Integrated age-specific cardiovascular risk reduction guidelines published 12/2011
 - Lipids and lipoproteins
 Universal Screening

- Overweight/obesity
- Hypertension
- Diabetes mellitus and metabolic syndrome
- Nutrition/diet
- Physical activity
- Tobacco

Kavey REW, Simons-Morton DG, de Jesus JM and the Expert Panel. Expert panel on integrated guidelines for cardiovascular health and risk reduction in children and adolescents: Summary report. Pediatrics 2011;128: S1-44.

2

Caption text

Rationale for Universal Screening

- Early atherosclerosis exists in young patients with elevated cholesterol
- Early treatment of CVD risk factors in youth is effective
- Screening with family history alone misses <u>30-60%</u> of children with dyslipidemia
- Lipid disorders are common in children
 - Increasing with overweight and obesity

Kavey REW, Simons-Morton DG, de Jesus JM and the Expert Panel. Expert panel on integrated guidelines for cardiovascular health and risk reduction in children and adolescents: Summary report. Pediatrics 2011;128: S1-44.

Prevalence of Dyslipidemia

- 20% of adolescents have at least one lipid abnormality
 - 8% high LDL-C
 - 8% low HDL-C
 - 10% high triglycerides

National Health and Nutrition Examination Survey III (NHANES) (2010). Prevalence abnormal lipid levels among youth: US 1999-2006.

Laboratory Testing

- Non-fasting lipid profile (non-FLP)
 - Total-C, HDL-C
 - Calculate Non-HDL-C = Total cholesterol HDL-C

OR

- 12-hr fasting lipid profile (FLP)
 - Total-C, HDL-C, TG
 - If fasting TG < 400 mg/dL:
 - Calculate LDL-C = (Total-C) (HDL-C) (TG/5)
 - If fasting TG ≥ 400 mg/dL
 - Calculate Non-HDL-C = Total cholesterol HDL-C

Use of Non-HDL-C

- Accurate in non-fasting state
- In adults:
 - Non-HDL-C = better predictor of CV events than LDL-C
- In children:
 - Non-HDL-C and LDL-C are equally good predictors of adult lipid levels
- In epidemiologic studies:
 - Non-HDL-C correlates with raised lesions and subclinical atherosclerosis on vascular imaging in childhood and at autopsy

Diagnosis

WHEN AND HOW TO SCREEN FOR DYSLIPIDEMIA

Lipid Screening < Age 2 years

No lipid screening

Lipid Screening: Ages 2-8 years

- No Routine Screening
- Measure FLP twice & average results if:
 - Parent with total cholesterol ≥ 240 mg/dl
 - Premature CVD in first or second degree relatives
 - < 55 years males and < 65 years females
 - Diabetes (Type I or II)
 - Hypertension
 - BMI > 85th percentile
 - · Cigarette smoking (or secondhand smoke)
 - Chronic/end-stage kidney disease/post-renal transplant
 - · Nephrotic syndrome
 - Post-orthotopic heart transplantation
 - Kawasaki disease, with current or regressed aneurysm
 - · Chronic inflammatory disease
 - HIV infection

Lipid Screening: Ages 9-11 years

- Universal Screening
- Measure once between 9-11 years
- Non-FLP:

The "D" in Dyslipidemia

- Obtain FLP twice if
 - non-HDL ≥ 145 mg/dL
 - HDL < 40 mg/dL

OR

- FLP:
 - Repeat FLP if
 - LDL-C ≥ 130 mg/dL
 - non-HDL-C ≥ 145 mg/dL
 - HDL-C < 40 mg/dL
 - TG \geq 100 mg/dL (< 10 yrs) or TG \geq 130 mg/dL (\geq 10 yrs)

Lipid Screening: Ages 12-16 years

- No routine screening
- If new knowledge of CV risk (same as 2-8 years), measure FLP twice and average results

Lipid Screening: 17-21 years

Universal Screening
Measure once between 9-11 years:

Ages 17-19 yrs

- Non-FLP:
 - Obtain FLP twice if
 - non-HDL ≥ 145 mg/dL
 - HDL < 40 mg/dL

OR

- FLP:
 - Repeat if
 - LDL-C ≥ 130 mg/dL
 - non-HDL-C ≥ 145 mg/dL
 - HDL-C < 40 mg/dL
 - TG ≥ 130 mg/dL

Ages 20-21 yrs

- Non-FLP:
 - Obtain FLP twice if
 - non-HDL ≥ 190 mg/dL
 - HDL < 40 mg/dL

OR

- FLP:
 - Repeat if
 - LDL-C ≥ 160 mg/dL
 - non-HDL-C ≥ 190 mg/dL
 - HDL-C < 40 mg/dL
 - TG ≥ 150 mg/dL

Lipid Levels in Children and Adolescents

Category	Acceptable mg/dL	Borderline mg/dL	High mg/dL	Low mg/dL
TC	<170	170-199	<u>≥</u> 200	
LDL-c	<110	110-129	≥130	
Non HDL-c	<120	120-144	≥145	
TG				
0-9yr	<75	75-99	≥100	
10-19yr	<90	90-129	≥130	
HDL-c	>45	40-45		<40

Cut points for a high or borderline high value are 95th and 75th percentile, respectively. Cut points for a low or borderline low value are 5th and 25th percentile, respectively.

Kwiterovitch P, J Clin Endocrinol Metab 2008, Kavey REW et al. Pediatrics 2011;128: S1-44

Lipid Levels in Young Adults 20-24

Category	Low mg/dL	Borderline mg/dL	Acceptable mg/dL	Borderline mg/dL	High mg/dL
TC	_	_	<190	190–224	≥225
LDL cholesterol	_	_	<120	120–159	≥160
Non-HDL cholesterol	_	_	<150	150–189	≥190
Triglycerides	_	_	<115	115–149	≥150
HDL cholesterol	<40	40–44	>45	_	_

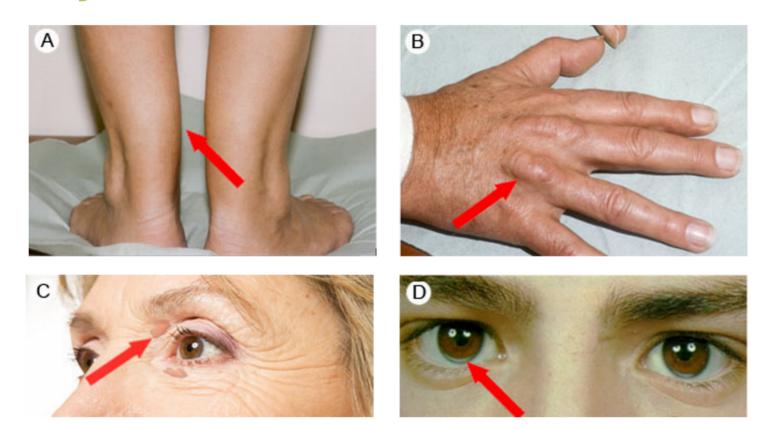
Cut points for a high or borderline high value are 95th and 75th percentile, respectively. Cut points for a low or borderline low value are 5th and 25th percentile, respectively.

Kwiterovitch P, J Clin Endocrinol Metab 2008, Kavey REW et al. Pediatrics 2011;128: S1-44

Clinical Case I (continued)

- Physical Exam:
 - Vitals:
 - BMI 19.4 (50th %)
 - Blood pressure 120/74 (86th %)
 - Pulse 72 bpm
 - PE: benign, no xanthomas, Tanner Stage II
- Labs, mg/dL (average of 2)
 - TC 444 (> 95%), HDL-C 64 (50-75%), LDL-C 366 (> 95%), TG 69 (50-75%)
 - Thyroid functions, UA, Glucose, Insulin, AST/ALT, CK: normal

Familial Hypercholesterolemia (FH)


- Autosomal dominant inheritance
 - ~1:200-1:500 prevalence (heterozygous), ~1:1,000,000 (homozygous)
- Mutation in LDL-C receptor or apoB-100
- Heterozygous FH
 - TC ≥ 270 mg/dL, LDL-C ≥ 160 mg/dL
 - If untreated, risk of CVD
 - Men: 80% by 60 years old
 - Women: 45% by 60 years old
- Homozygous FH
 - TC > 700-1200 mg/dL, LDL-C > 400 mg/dL
 - Death from MI < 30 if untreated
 - Usually requires LDL apheresis

2

Caption text

Physical Manifestations of FH

(A) Achilles tendon xanthoma, (B) extensor tendons xanthoma, (C) palpebral xanthelasma, (D) Corneal arcus

FH Australasia Network http://www.athero.org.au/fh-home

Children with Dyslipidemia, Overweight, or at Risk for CVD

- Total fat 25%-30% daily kcals
- Saturated fat < 10% daily kcals
 - Aim for < 2 grams saturated fat/serving
- Mono- and poly-unsaturated fats up to 20% daily calories
- · Avoid trans fats
- Zero sweetened beverages
- ≥ 5 servings fruits & vegetables daily
- Fiber: Age + 5 g/day (2-10 yrs)
 - 14 g/1000kcal (11-21 yr)
 - Goal: 2-3 grams of fiber/serving or slice

NCEP expert panel of blood cholesterol levels in children and adolescents. Pediatrics 1992;89:495-501.

2

Caption text

Diet: High LDL-c

- After 3-6 months of low-saturated fat diet and LDL-C remains >130 mg/dL
 - Reduce saturated fat intake to ≤ 7% of total calories
- Recommend meeting with dietitian
 - Make changes without compromising nutrition
 - Food choices at home and other places
 - Friend's houses, restaurants, school, etc.
- Soluble fiber
 - Psyllium (enriched cereal or supplements, Metamucil)
 - 6 g/d for children 2–12 years
 - 12 g/d for those ≥ 12 years

Daniels SR, Pediatrics 2008

Clinical Case II

- Physical exam:
 - Vitals:
 - BMI: 27.0 kg/m² (>95%)
 - Blood pressure 114/70 (<90%)
 - Pulse: 75 bpm
 - PE: innocent murmur
- Labs, mg/dL:
 - TC: 213 mg/dL (>95%), HDL-C: 27 (<5%), LDL-C: 140 (>95%), TG: 229 (>95%)
 - Thyroid functions, ALT/AST, glucose, insulin, UA: normal

Familial Combined Hyperlipidemia

- Very common lipid disorder
 - 0.5% 2% of the population
 - Autosomal dominant
 - Phenotypic variability between family members
- Common lipid phenotype:
 - TC 250-350 mg/dL, LDL-C > 160 mg/dL, TG 200-400 mg/dL, low HDL
- No unique clinical features
- 10% of all patients with MI < 60 years

Obesity-related Dyslipidemia

- Difficult to differentiate from familial combined dyslipidemia
- More common with obesity epidemic
- Common lipid phenotype:
 - High TG, low HDL, normal to mildly increased LDL
- Improves with diet, weight loss, exercise
 - Usually no pharmacologic therapy needed, just hard work!
 - Focus on reducing simple carbohydrates and saturated fat, increasing complex carbohydrates

Diet: High Triglycerides

- Limit simple sugars and carbohydrates
- Increase fiber and complex carbohydrates
- Omega-3 fatty acids
 - Foods such as: wild salmon, ground flaxseed, walnuts, winter squash
 - EPA + DHA, 2-4 grams/day
 - Hard to get through diet alone
 - OTC or prescription
 - DHA component may slightly raise LDL-C
- Weight loss or stabilization

Activity Recommendations

- All children ≥ 2 years should participate in 1 hour of enjoyable, moderate-vigorous intensity activities daily
- Limit sedentary activity (computer, television, texting, etc) to < 2 hr/day

www.cdc.gov

When to Consider Medications?

- After intensive diet and lifestyle changes for 6 months in children ≥ 10 years, ≥ 8 years in high-risk patients
- Statin is first-line therapy
- Target LDL
 - Goal < 130 mg/dL
 - Ideal < 110 mg/dL

Recommendations for Statin Therapy

Risk Factor

No risk factors for premature CVD

- Positive family history of premature CVD, or 1 high-risk factor/condition or ≥ 2 other moderate-risk factors/ conditions (see Risk Factor/Condition Table)
- ≥ 2 high risk factors/conditions or 1 high + 2 moderate risk factors/ conditions or clinical cardiovascular disease (see Risk Factor/Condition Table)

Recommended LDL-C Cut Points

LDL-C ≥ 190 mg/dL

LDL-C \geq 160 mg/dL

LDL-C ≥ 130 mg/dL

Risk Factors/Conditions: Statin Initiation

High risk

- Hypertension requiring drug therapy
- Cigarette smoking
- Severe obesity (BMI ≥ 97th percentile)
- Diabetes (Type I and Type 2)
- Chronic/end-stage kidney disease/ post-renal transplant
- Post-orthotopic heart transplantation
- Kawasaki disease, currently with aneurysm

Moderate risk

- Hypertension (blood pressure > 95th percentile for gender and age) not requiring drug therapy
- Obesity (BMI ≥ 95th percentile but < 97th percentile)
- HDL-C < 40 mg/dL
- Kawasaki disease with regressed aneurysm
- Chronic inflammatory disease
- · HIV infection
- · Nephrotic syndrome

Statins Approved for Children

Pravastatin (Pravachol ®)
generic

10-20 mg/day (8-13 yrs) 10-40 mg/day (14-18 yrs)

20-80 mg/day (> 18 yrs)

Lovastatin (Mevacor ®)

10-40 mg/day (10-17 yrs)

Simvastatin (Zocor ®) *generic*

5-40 mg/day (10-17 yrs)

90.....

Atorvastatin (Lipitor ®)
generic

10-20 mg/day (10-17 yrs) 10-80 mg/day (≥ 18 yrs)

Rosuvastatin (Crestor ®) *generic*

5-40 mg/day (10-17 yrs)

Possible Statin Side Effects

- Myalgia, myositis, rhabdomyolysis
 - Obtain baseline CK, and follow symptoms
- Elevation of LFTs (monitoring recommendation changed Feb 2012)
 - Obtain baseline LFTs, after medication initiation and any change in medication
- Increased fasting glucose and HgbA1c (potential side effect added Feb 2012)
 - Baseline fasting glucose. Monitor glucose and HgbA1c if child has risk factors for developing diabetes
- Teratogenic
 - Consider birth control for girls/abstinence

Pasternak RC et al, Circulation 2002; Thompson ED et al, JAMA 2003.

Clinical Case I

- Severe heterozygous FH: LDL goal < 130 mg/dL
- Labs I (in mg/dL):
 - TC 444 (> 95%), HDL-c 64 (50-75), LDL-C 366 (> 95), TG 69 (50-75), ALT/AST, CK: normal
- Atorvastatin 10mg
- Labs II, 2 months later:
 - TC 275 (> 95), HDL-c 63 (50-75), LDL-C 202 (> 95), TG 51 (5-50)

Clinical Case I

- Atorvastatin 20mg
- Labs III, 2 months later
 - TC 244 (> 95), HDL-c 66 (50-95), LDL-C 165 (> 95), TG 67 (50-75)
- Atorvastatin 40mg
- Labs IV, 3 months later
 - TC 221 (> 95), HDL-c 73 (50-95), LDL-C 138 (> 95), TG 51 (5-50)

Clinical Case II

- Familial combined vs obesity-related dyslipidemia
- Lab I:
 - TC: 213 (>95), HDL-C: 27 (<5), LDL-C: 140 (>95), TG: 229 (>95)
- Increase physical activity, decrease soda, 10 lb weight loss
- Lab. II, 6 months later:
 - TC: 172 (>95), HDL-C: 32 (<5), LDL-C: 125 (90-95), TG: 73 (60)

Summary: Screening

- Universal screening once age 9-11 yrs and 17-21 yrs
 - Fasting lipid profile or a non-fasting lipid profile
- At-risk 2-8 yr and 12-16 yr olds
 - Fasting lipid profile

Summary: Optimal Lipid Levels

- LDL-C: < 110 mg/dL
- TG: < 75 mg/dL if < 10 yrs old
 - TG: < 90 mg/dL if ≥ 10 yrs old
- HDL-C: ≥ 45 mg/dL
- Non-HDL-C: < 120 mg/dL

- Consider statin therapy
 - If despite lifestyle changes and age ≥ 10 years
 - LDL-C remains ≥ 190, ≥ 160, or ≥ 130 based on risk factor profile
- Hypertriglyceridemia
 - Usually responds to decreased simple carbs, increased physical activity, weight loss/stabilization
 - Consider high-dose fish oil if after focused lifestyle changes
 - TGs remain 250-499 mg/dL

Lipid Heart Clinic

The "D" in Dyslipidemia

- Located at CHOP Main and Virtua at Voorhees, NJ
- New patients 2-18 years with lipid abnormalities;
 established patients followed through college, if desired
- If labs not in CHOP system, please fax to: 215-590-4978
- Parents can call 215-590-4040 to schedule
- Questions? 215-590-1804